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Introduction
In 2018, 18.1 million people around the world had cancer, and 9.6 

million died from the disease. By 2040, those figures will nearly double 
[1]. An increasing body of evidence is suggesting that the reason for 
this evolution is twofold: on the one hand, environmental, nutritional 
and lifestyle factors play an important role in the disease etiology, 
while, on the other hand, most current therapies are killing tumor and 
healthy cells alike, instead of specifically targeting common metabolic 
hallmarks of cancer cells. Among the latter we could mention: the 
significant changes of pH and redox potential inside and outside 
the tumor cells, their energy generating pathways relying on aerobic 
glycolysis, glutaminolysis or fatty acid oxidation, the activation of the 
NADPH:quinone-oxidoreductases, as well as the high accumulation 
of transitional metals and organic pollutants in the tumor tissue 
accompanied by inactivation of several antioxidative and detox systems. 
This review concentrates on the metabolic and toxicologic markers of 
cancer cells and proposes a new integrative approach in this respect.

Role of metal accumulation in cancer etiology and 
therapy

In recent decades, the presence of transition metals such as iron, 
copper, nickel or chromium in connection with the production of 
free radicals through Fenton/Haber-Weiss reactions, autoxidation of 
ascorbate, peroxidation processes of fatty acids and formation of DNA 
strand breaks has been reported [2,3]. In order to explore the connection 
between environment and cancer growth in humans, we assessed the 
accumulation of transitional metals and aluminum in healthy and breast 
cancer biopsies. Our Atomic Absorption Spectrometry measurements 
showed for the first time a highly significant accumulation of iron, 
nickel, chrome, zinc, cadmium, mercury, lead and aluminum in breast 
tumor biopsies, when compared to the control biopsies [4,5] (Figure 1). 
Subsequent independent studies have confirmed our findings, reporting 
significantly increased concentrations of iron, aluminium, chromium, 
nickel and zinc when compared to either healthy surrounding tissue or 
samples from healthy persons undergoing mammoplasty [6-9].

Proliferating cells have an increased iron requirement, which is 
fulfilled by overexpression of transferrin receptors (TfR1) on the cell 
surface. Normal lymphocytes increase the density of TfR1 by 50 times 
after stimulation with mitogenic factors and transformed lymphoid cells 
even have 1,000 times the number of TfR1 [10,11]. In accordance with 
our findings [4,12], clinical research results show a significantly higher 
transferrin receptor density and ferritin accumulation in breast cancer 
tissue [13]. Furthermore, iron deficiency in the culture medium leads 
to apoptosis of cancer cells [14]. The overexpression of zinc transport 

proteins (ZIP4, ZIP10, LIV-1) is also well documented in cancer cells 
[15-17].

Once absorbed in the cell, iron is used on the one hand for the 
synthesis of iron-containing enzymes, on the other hand is stored as 
ferritin complex.

The high intracellular concentration of transitional metals leads to 
high ROS production via Haber-Weiss and Fenton reactions [4] (Figure 
2), and may be responsible for the considerable genetic variability/
heterogeneity of tumor cells, even within the same tumor, among other 
exogenous ROS sources [18-20].

In view of these facts, the widespread clinical prescription of 
iron and zinc preparations for cancer patients appears to be rather 
counterproductive, as the malignant cells are preferentially supplied 
with these metals. Actually, one should try to counteract the iron excess. 
Indeed, chelating iron and simultaneously inhibiting the formation of 
the Tf-TfR1 complex by means of monoclonal antibodies were both able 
to inhibit tumor growth in a mouse model, much more efficiently than 
any single agent [21]. Furthermore, clinical studies have also shown the 
benefits of iron chelators as anti-cancer therapy in neuroblastoma and 
leukemia cases [22-25].

Ni, Cr and Cd have been identified as mutagens and carcinogens 
due to their ability to inhibit the repair of damaged DNA. Besides, 
they are also able to increase the mutagenicity and carcinogenicity of 
directly acting genotoxic substances [26]. The carcinogenic effects of 
Ni, directly or in combination with organic compounds, have been 
described in the literature [27,28] and slightly elevated concentrations 
of Fe and Ni have been found in malignant human prostate tissue [29]. 
Inhalation of certain forms of hexavalent chromium causes lung cancer 
and, at cellular level, chromium exposure can inhibit apoptosis or 
induce neoplastic changes [30]. Occupational cadmium exposure can 
cause lung cancer and high cadmium concentrations have been found 
in proliferative prostate lesions [31].
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Figure 1. The iron, nickel and zinc content in the 20 breast cancer biopsies is up to 10X, 100X and 25X higher than in the control biopsies [10]
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Ni, Cd and Cr activate the estrogen receptors in the absence 
of estradiol [32-34] thus acting as "endocrine disruptors" or 
“metalloestrogens”. As a consequence, exposure to these metals can 
increase the breast cancer risk [35] and stimulate growth of ER+ breast 
cancer cells [32].

Metalloestrogens also trigger changes of the estrogen binding 
sites of genes in the cell nucleus. In mammary gland cells, this leads 
to an increase in cell division and more errors in DNA amplification, 
augmenting the risk of cancer [32]. 

Interestingly, it has been shown that zinc and overexpression of its 
transporters mediate and accelerate tumor growth as a necessary trace 
element [15,17], while zinc deficiency in mice and rats proved to inhibit 
tumor growth [36-38].

Due to the increasingly broad contact with aluminum compounds, 
a growing amount of data regarding the involvement of this light 
metal in tumor development and growth through its mitochondrial-
damaging and estrogen-like effects is accumulating [39-41].

The etiology of most human breast tumors is still controversial. We 
have argued that environmental pollutants that cause oxidative stress 
and lipid peroxidation can additionally act as endocrine disruptors in 
the development of breast cancer [35,42].

Therefore, chronic toxic exposure to transition metals and / 
or organic pollutants, combined with genetic polymorphisms of 
detoxification phase I+II enzymes and overexpression of transport 
proteins or their receptors, may be responsible for this phenomenon 
[43].

Redox state and pH in malignant tumors 
The redox and pH shifts define electron or proton transfer reactions 

in biological or chemical systems. They are correlated according to 
the rule: the lower the pH, the higher the redox potential (Eh), and 
the higher the pH, the lower the redox potential. Shapiro [44] defines 
redosis as the accumulation of non-volatile reductive equivalents 
(such as glutathione, NADH, cysteine, glucose), as opposed to the 
accumulation of oxidative substances (O2, O3, halogens, metals in 
oxidized form, environmental pollutants, etc.), which is defined as 
oxidosis. The measurement of the redox potentials in blood, plasma 
or tissue (Eh in mV) reflects the sum of all redox pairs in the sample, 
whereby usually the ratio between the reduced and oxidized glutathione 
(GSH / GSSG) and pO2 are decisive for the cellular redox status [45]. 
The Eh correlates with the biological status of normal cells: -220 mV 
(redosis / proliferation), -200 mV (differentiation), -170 mV (oxidosis 
/ apoptosis) [46], while proliferating cancer cells exhibit a permanent 
redosis (-220 mV or lower) with an increased accumulation of 

reduced glutathione, NADH, NADPH, cysteine, or glucose via GLUT 
transporters [47-51].

This redosis shift may be due to hypoxic states and / or a significant 
accumulation of electrophilic organic noxae [52-54] and transitional 
metals [4,42,55] in degenerated tissues after failure of the corresponding 
detoxification and antioxidant protection systems (GST, SOD, catalase) 
[56-61]. In this respect, the increased glutathione synthesis of malignant 
cells is regarded as an adaptive response and resistance mechanism 
against various pro-oxidative attacks (accumulation of heavy metals or 
organotoxins, chemotherapy, radiation, endogenous ROS production) 
and is associated with their propensity to proliferate [4,18,43,62-64].

Intracellular and extracellular pH in tumor tissues
pH measurements in healthy tissues under normal pO2 values 

associate temporary growth factor-induced proliferation with an 
intracellular alkalization and increased aerobic glycolysis [65-67]. In 
accordance with the existing redosis, proliferating cancer cells exhibit 
permanent intracellular alkalization (pHi 7.12 - 7.65) compared to 
normal cells (pHi 6.99-7.20) [68-70], combined with a strong aerobic 
glycolysis, which was already described in the 1930's as the Warburg 
effect [71-73].

The permanent intracellular alkalization of proliferating cancer 
cells is largely due to an activation of the Na+/H+ antiporter system 
NHE1 [74,75], the V-ATPase proton pump [76-78] and the MCT 
lactate transporter, which ensure an uninterrupted discharge of protons 
(H+) and lactate in the extracellular space [79].

Hypoxia- and HIF1-caused hyperexpression of membrane-bound 
and zinc-dependent carbonic anhydrases CA2, CA9 and CA12 have 
already been demonstrated in many tumors [80-83] and together 
with anion exchangers such as Cl-/HCO3

- (AE1) are involved in 
disease progression [84,85]. Accordingly, there is a pronounced acidic 
extracellular environment in tumor tissue (pHe 6.2 - 6.9) compared to 
normal tissue (pHe 7.3 - 7.4), which clearly promotes tumor growth 
and metastasis [68,86] and blocks the activity of immunocompetent 
cells [87,88].

Activation of aerobic glycolysis (Warburg effect)
The intracellular pH increase in malignant cells can activate aerobic 

glycolysis at normal pO2 concentrations [69,79,86]. Activation of the 
glycolysis enzymes hexokinase (HK), phosphofructokinase (PFK), 
pyruvate dehydrogenase kinase (PDK1) and the pentose-5-phosphate 
pathway (via G6PDH and transketolase-TKTL1) leads, on the one 
hand, to a direct inhibition of OXPHOS in the mitochondria and, on the 
other hand, via high pyruvate concentrations, to an increase of Hypoxia 
Inducible Factor (HIF1) [89,90]. The latter plays a key role in the genetic 
transcription of the glucose transporter (GLUT 1) and the glycolysis 
enzymes, as well as in the inhibition of pyruvate dehydrogenase (PDH) 
with reduction of pyruvate conversion to acetyl-CoA and subsequent 
inhibition of Krebs cycle or oxidative phosphorylation [91,92]. HIF1 
also activates carbonic anhydrase CA9 in tumor cells and thus maintains 
the extracellular acidosis [80-82].

Cancer metabolic hallmarks as therapy targets
In view of the already mentioned genetic variability of cancer 

cells within a tumor and the associated resistance to therapy, the basic 
toxicological and molecular-biological characteristics mentioned 
above (Figure 3) are of particular importance for new complementary 
treatment approaches. In vitro and in vivo studies of the last years, as 

Figure 2. The production of hydroxyl radicals in H2O2- and metal- dependant Fenton and 
Haber-Weiss reactions
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well as our own therapy experiences show a significant antiproliferative 
and pro-apoptotic effect in tumors by means of:

• High-dose vitamin C, which has a strong pro-oxidative effect in 
the presence of increased cellular metal concentrations via ROS 
formation [4,10,93]. Accordingly, the increased heavy metal 
concentration in various tumors can be used for therapeutic 
approaches with vitamin C or polyphenols, as previously reported 
[94-97]. The reduction and mobilization of transition metals from 
their storage or transport proteins make them extremely reactive for 
the catalysis of free radical reactions.

• The Fenton and Haber-Weiss reactions described above generate 
hydroxyl radicals to a high degree, which can lead to lipid 
peroxidation, interruptions of DNA strands and apoptosis [3,94,98]. 
The autoxidation of vitamin C with production of superoxide 
and hydrogen peroxide in the presence of transition metals such 
as iron, nickel, chromium or mercury can be clearly detected in 
human serum using a chemiluminescence method [99]. In an acidic 
environment (H+ excess in extracellular space) the superoxide 
radical is converted into H2O2 and can induce apoptosis/necrosis of 
tumor cells.

• Due to the highly significant accumulation of heavy metals in tumor 
tissue, we have described for the first time the above mechanism as an 
explanation for the pro-oxidative, tumor-specific activity of vitamin 
C [4,10,43,93]. In contrast, healthy, non-metal contaminated cells 
are antioxidatively protected by vitamin C. Clinical studies and our 
own experience with pharmacologically active doses of Vitamin C 
administered i.v. prove that such approaches can lead to dramatic 
shrinkage of the tumor, an extension of the patient’s life and to an 
increase of their quality of life [5].

• Natural polyphenols generate, in the presence of increased metal 
concentrations (Figure 4) [10,97,100] or activated NADPH : 
quinone oxidoreductases, superoxide and semiquinone radicals 
and thus exhibit a strong pro-oxidative effect. As discussed above, 
tumors tend to accumulate heavy metals; the activity of the 
microsomal NADPH : quinone oxidoreductase, has been shown to 
be strongly increased in various tumor types [101]. Through these 
two pathways, in situ bioactivation of phenolic and polyphenolic 
therapeutics occurs in a tumor-selective manner [102,103], leading 
to a significant production of superoxide, H2O2 and semiquinone 
radicals and thus to a selective increase of the redox potential in the 
tumor [101]. Curcumin combined with classical chemoterapeutics 

such as Cisplatin or Docetaxel led in mouse models of head and 
neck, respectively ovarian carcinoma to a suppression up to 96% of 
the tumor growth [104,105].

• The elimination of intracellular redosis with the help of pro-
oxidative approaches such as hyperthermia [99], short-term fasting 
(3-5 days) [106,107], ketogenic diet [108-110] and regular physical 
exercise [111].

• Studies in animal models could show that the association of a 
ketogenic diet with radiotherapy can lead to a complete remission 
of the tumor, and that the animals remained tumor-free even 200 
days after withdrawal from the ketogenic diet [109]. A specially 
formulated nutritional formula developed for the treatment of 
epilepsy (KetoCal) could diminish up to 65% the growth and 
vascularization of gliomas implanted in mice and significantly 
increase their survival rate [139].

• First clincal studies on patients with advanced carcinomas show that 
a ketogenic diet with an insulin lowering effect can be considered 
safe and that the concentrations of ketone bodies correlate with the 
stabilization of the disease or even remission [112].

• The use of basic solutions such as Ringer's lactate or NaHCO3 
to buffer the extracellular acidosis with anti-inflammatory 
and metastasis-inhibiting effects [113-115]. Simply the use of 
bicarbonate perfusions leads to a selective increase of intratumoral 
pH concomitantly with a decrease of new metastases generation, as 
well as a remarkable improvement of the therapeutic efficiency of 
Doxorubicin in mouse models [115].

• The usage of proton pump inhibitors from the Omeprazole family 
[77,116], which were shown in mouse models of B-Cell lymphoma 
to lead to a significant slowing of the tumor growth [117] and to a 
significant lowering of the incidence of esophageal adenocarcinoma 
in patients with Barrett’s Esophagus [118]. Also, V-ATPase-Inhibitors 
such as the macrolid antibiotics Bafilomycin A and Concanamycin 
A lead to a similar acidification of the tumoral millieu and apoptosis 
[76,119]. This finding was confirmed in clinical studies: breast cancer 
patients who received Esomeprazol before the chemotherapy had 
an almost double progression-free survival compared to the group 
receiving the standard chemotherapy (10.7 vs 5.8 months) [120]. 

• The inhibition of the Na+/H+ antiporter (NHE1) for the purpose of 
intracellular pHi reduction and apoptosis induction via 5-HMA and 
other amiloride derivatives in leukemia and hepatocarcinoma cells 
[121-123]

• The inhibition of carbonic anhydrase (CA) via acetazolamide 
[124], sulphonamides [80,81], coumarins, thiocoumarins or 
hydroxycinnamic acids [125,126]. 

• The inhibition of aerobic glycolysis with specific inhibitors of 
hexokinase (Lonidamine, 2-deoxyglucose, 3-bromo pyruvate), 
G6PDH (6-aminonicotinamide), the transketolase TKTL1 
(oxythiamine), PDK-1 (dichloroacetate), glyceraldehyde phosphate 
dehydrogenase (chlorohydrin, ornidazole, arsenate) and lactate 
dehydrogenase A (anti-RNA) or of glucose transporters (GLUT1-
3) via genistein, 5-thioglucose and mannoheptulose (Figure 5) 
[43,127-130].

• The selection of an appropriate form of nutrition with a low glycemic 
index not promoting tumor growth.

• Low in sugar, flour products, zinc, iron, nickel, chromium, folic acid, 
alcohol, glutamine, fat peroxides etc. [5].Figure 3. Metabolic targets of integrative oncology
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• Rich in omega-3 fatty acids, vitamin D3, carotenoids, complex 
CHOs, high-dose enzyme preparations, plant proteins, mixtures 
of selected amino acids, sphingolipids, phytosterols, isoflavonoids, 
polyphenols, L+ lactic acid and pro-oxidative vegetable and fruit 
juices etc. [131].

Conclusion
The causal link between the increasing environmental pollution 

(diesel exhaust, pesticides, wood preservatives, phthalates, solvents, 
tobacco smoke, alcohol, heavy metals, preservatives, dyes, etc.) and 
the continuous raise in cancer incidence is currently well documented. 
Their accumulation in cancer tissue leads to oxidative stress, followed by 
DNA mutations and thus to an increase in the intra- and intertumoral 
genetic variability [19,132]. This dynamic heterogeneity is the main 
cause for resistance to the classic oncologic therapies.

Since the redox, pH and glycolysis shifts in tumor tissue are 
regarded as metabolic markers of all cancer cells, they emerge as new 
therapeutic targets in modern oncology. 

The novel treatment approaches mentioned in this paper, per se 
or in combination with classical oncological therapies, can lead to 
a considerable increase in life expectancy and life quality. A detailed 
description of the above strategies, also addressing alternate energy-
generating pathways such as glutaminolysis and fatty acid synthesis/
oxidation will be published elsewhere.
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